\(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\) [763]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 513 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=-\frac {8 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^5 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 \left (a^4+9 a^3 b+16 a^2 b^2-12 a b^3-16 b^4\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d} \]

[Out]

2/3*b^2*sec(d*x+c)^(3/2)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)+4/3*b^2*(5*a^2-3*b^2)*sec(d*x+c)^(3/2
)*sin(d*x+c)/a^2/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)+2/3*(a^4-13*a^2*b^2+8*b^4)*sec(d*x+c)^(3/2)*sin(d*x+c)*(
a+b*cos(d*x+c))^(1/2)/a^3/(a^2-b^2)^2/d-8/3*b*(2*a^4-7*a^2*b^2+4*b^4)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1
/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+s
ec(d*x+c))/(a-b))^(1/2)/a^5/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)+2/3*(a^4+9*a^3*b+16*a^2*b^2-12*a*b^3-16*b^4)*
csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2
)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^4/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.46 (sec) , antiderivative size = 513, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4307, 2881, 3134, 3077, 2895, 3073} \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \cos (c+d x)}}+\frac {2 b^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac {8 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^5 d (a-b) (a+b)^{3/2} \sqrt {\sec (c+d x)}}+\frac {2 \left (a^4+9 a^3 b+16 a^2 b^2-12 a b^3-16 b^4\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a^4 d (a-b) (a+b)^{3/2} \sqrt {\sec (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}{3 a^3 d \left (a^2-b^2\right )^2} \]

[In]

Int[Sec[c + d*x]^(5/2)/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(-8*b*(2*a^4 - 7*a^2*b^2 + 4*b^4)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(S
qrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c +
 d*x]))/(a - b)])/(3*a^5*(a - b)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) + (2*(a^4 + 9*a^3*b + 16*a^2*b^2 - 12*a*b
^3 - 16*b^4)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c
 + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*
a^4*(a - b)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) + (2*b^2*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(
a + b*Cos[c + d*x])^(3/2)) + (4*b^2*(5*a^2 - 3*b^2)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^2*(a^2 - b^2)^2*d*Sq
rt[a + b*Cos[c + d*x]]) + (2*(a^4 - 13*a^2*b^2 + 8*b^4)*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*
x])/(3*a^3*(a^2 - b^2)^2*d)

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx \\ & = \frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{2} \left (a^2-2 b^2\right )-\frac {3}{2} a b \cos (c+d x)+2 b^2 \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )} \\ & = \frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{4} \left (a^4-13 a^2 b^2+8 b^4\right )-\frac {1}{2} a b \left (3 a^2-b^2\right ) \cos (c+d x)+b^2 \left (5 a^2-3 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}+\frac {\left (8 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {3}{2} b \left (2 a^4-7 a^2 b^2+4 b^4\right )+\frac {3}{8} a \left (a^4+7 a^2 b^2-4 b^4\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{9 a^3 \left (a^2-b^2\right )^2} \\ & = \frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}+\frac {\left ((a-b) \left (a^4+9 a^3 b+16 a^2 b^2-12 a b^3-16 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2}-\frac {\left (4 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2} \\ & = -\frac {8 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^5 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 \left (a^4+9 a^3 b+16 a^2 b^2-12 a b^3-16 b^4\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 13.24 (sec) , antiderivative size = 546, normalized size of antiderivative = 1.06 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {4 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (4 b \left (2 a^5+2 a^4 b-7 a^3 b^2-7 a^2 b^3+4 a b^4+4 b^5\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+a \left (a^5-8 a^4 b+7 a^3 b^2+28 a^2 b^3-4 a b^4-16 b^5\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+2 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 a^4 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)} \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}+\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {8 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sin (c+d x)}{3 a^4 \left (a^2-b^2\right )^2}-\frac {2 b^3 \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {2 \left (11 a^2 b^3 \sin (c+d x)-7 b^5 \sin (c+d x)\right )}{3 a^3 \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac {2 \tan (c+d x)}{3 a^3}\right )}{d} \]

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(4*b*(2*a^5 + 2*a^4*b - 7*a^3*b^2 - 7*a^2*b^3 + 4*a*b^4 + 4*b^5)*Sqrt
[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan
[(c + d*x)/2]], (-a + b)/(a + b)] + a*(a^5 - 8*a^4*b + 7*a^3*b^2 + 28*a^2*b^3 - 4*a*b^4 - 16*b^5)*Sqrt[Cos[c +
 d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*
x)/2]], (-a + b)/(a + b)] + 2*b*(2*a^4 - 7*a^2*b^2 + 4*b^4)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]
^2*Tan[(c + d*x)/2]))/(3*a^4*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (Sqrt[a + b*
Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((-8*b*(2*a^4 - 7*a^2*b^2 + 4*b^4)*Sin[c + d*x])/(3*a^4*(a^2 - b^2)^2) - (2*b
^3*Sin[c + d*x])/(3*a^2*(a^2 - b^2)*(a + b*Cos[c + d*x])^2) - (2*(11*a^2*b^3*Sin[c + d*x] - 7*b^5*Sin[c + d*x]
))/(3*a^3*(a^2 - b^2)^2*(a + b*Cos[c + d*x])) + (2*Tan[c + d*x])/(3*a^3)))/d

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(5848\) vs. \(2(467)=934\).

Time = 13.99 (sec) , antiderivative size = 5849, normalized size of antiderivative = 11.40

method result size
default \(\text {Expression too large to display}\) \(5849\)

[In]

int(sec(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^(5/2)/(b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*co
s(d*x + c) + a^3), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(5/2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((1/cos(c + d*x))^(5/2)/(a + b*cos(c + d*x))^(5/2),x)

[Out]

int((1/cos(c + d*x))^(5/2)/(a + b*cos(c + d*x))^(5/2), x)